• Hey, guest user. Hope you're enjoying NeoGAF! Have you considered registering for an account? Come join us and add your take to the daily discourse.

Research papers on time crystals to be published March 9 in the journal Nature

Status
Not open for further replies.

XiaNaphryz

LATIN, MATRIPEDICABUS, DO YOU SPEAK IT
https://phys.org/news/2017-03-crystals-envisioned-princeton-scientists.html

Time crystals may sound like something from science fiction, having more to do with time travel or Dr. Who. These strange materials—in which atoms and molecules are arranged across space and time—are in fact quite real, and are opening up entirely new ways to think about the nature of matter. They also eventually may help protect information in futuristic devices known as quantum computers.

Two groups of researchers based at Harvard University and the University of Maryland report March 9 in the journal Nature that they have successfully created time crystals using theories developed at Princeton University. The Harvard-based team included scientists from Princeton who played fundamental roles in working out the theoretical understanding that led to the creation of these exotic crystals.

"Our work discovered the essential physics of how time crystals function," said Shivaji Sondhi, a Princeton professor of physics. "What is more, this discovery builds on a set of developments at Princeton that gets at the issue of how we understand complex systems in and out of equilibrium, which is centrally important to how physicists explain the nature of the everyday world."

Ordinary crystals such as diamonds, quartz or ice are made up of molecules that spontaneously arrange into orderly three-dimensional patterns. The sodium and chlorine atoms in a crystal of salt, for example, are spaced at regular intervals, forming a hexagonal lattice.

In time crystals, however, atoms are arranged in patterns not only in space, but also in time. In addition to containing a pattern that repeats in space, time crystals contain a pattern that repeats over time. One way this could happen is that the atoms in the crystal move at a certain rate. Were a time crystal of ice to exist, all of the water molecules would vibrate at an identical frequency. What is more, the molecules would do this without any input from the outside world.


The concept of time crystals originated with physicist Frank Wilczek at the Massachusetts Institute of Technology. In 2012, the Nobel laureate and former Princeton faculty member was thinking about the similarities between space and time. In physics parlance, crystals are said to "break translational symmetry in space" because the atoms assemble into rigid patterns rather than being evenly spread out, as they are in a liquid or gas. Shouldn't there also be crystals that break translational symmetry in time?

While on sabbatical at the Max Planck Institute for the Physics of Complex Systems in Germany, Sondhi and Khemani realized that these ideas about how to prevent systems from reaching equilibrium would enable the creation of time crystals. A system in equilibrium cannot be a time crystal, but non-equilibrium systems can be created by periodically poking, or "driving," a crystal by shining a laser on its atoms. To the researchers' surprise, their calculations revealed that periodically prodding atoms that were in non-equilibrium many-body localized phases would cause the atoms to move at a rate that was twice as slow—or twice the period—as the initial rate at which they were prodded.

To explain, Sondhi compared the driving of the quantum system to squeezing periodically on a sponge. "When you release the sponge, you expect it to resume its shape. Imagine now that it only resumes its shape after every second squeeze even though you are applying the same force each time. That is what our system does," he said.


Princeton postdoctoral researcher Curt von Keyserlingk, who contributed additional theoretical work with Khemani and Sondhi, said, "We explained how the time crystal systems lock into the persistent oscillations that signify a spontaneous breaking of time translation symmetry." Additional work by researchers at Microsoft's Station Q and the University of California-Berkeley led to further understanding of time crystals.

As a result of these theoretical studies, two groups of experimenters began attempting to build time crystals in the laboratory. The Harvard-based team, which included Khemani at Harvard and von Keyserlingk at Princeton, used an experimental setup that involved creating an artificial lattice in a synthetic diamond. A different approach at the University of Maryland used a chain of charged particles called ytterbium ions. Both teams have now published the work this week in Nature.

Both systems show the emergence of time crystalline behavior, said Christopher Monroe, a physicist who led the effort at the University of Maryland. "Although any applications for this work are far in the future, these experiments help us learn something about the inner workings of this very complex quantum state," he said.

The research may eventually lead to ideas about how to protect information in quantum computers, which can be disrupted by interference by the outside world.
Many-body localization can protect quantum information, according to research published in 2013 by the Princeton team of David Huse, the Cyrus Fogg Brackett Professor of Physics, as well as Sondhi and colleagues Rahul Nandkishore, Vadim Oganesyan and Arijeet Pal. The research also sheds light on ways to protect topological phases of matter, research for which Princeton's F. Duncan Haldane, the Eugene Higgins Professor of Physics, shared the 2016 Nobel Prize in Physics.

Sondhi said that the work addresses some of the most fundamental questions about the nature of matter. "It was thought that if a system doesn't settle down and come to equilibrium, you couldn't really say that it is in a phase. It is a big deal when you can give a definition of a phase of matter when the matter is not in equilibrium," he said.
 
I7y5UgQrfFoflqBXZ2rQ_LsiD6B4WdK5F17eLbjy7y5gJ1y4dzX4fk_DluJ3UTLnmt3E7gXU=w332-h180-p-no

Disclaimer: Has nothing to do with time.


:(
 

Woorloog

Banned
Before the edit, I thought this was some sort of time travel joke

Actually it was, though not intentionally. I realized it right after i wrote it and figured, "why not". I just ended up editing my post rather than make a new one. And then i made another one anyway...
 
D

Deleted member 80556

Unconfirmed Member
Incredibly interesting. I like how the article was written, I was able to understand the concept pretty well. But I do have the question: why do these crystals occur, why shouldn't the sponge (using the analogy of the article) go back to it's shape every time the force applied to it has been stopped?
 
It's not so much time-travel, as much as preserving something through time.

We already do that with digital data on hard drives, through magnets and whatnot.

But now we're talking about suspending molecular structures to preserve them through time.

Maybe we can eventually suspend organic molecular structures through time? Not just freezing, but full, non-degrading preservation.

Maybe some day we can take a trip to that new solar system with the 3 Habitable Zone planets? The trip would STILL take a few million years, but when we got there we'd be exactly the same age we are now! Not aged a day!

--It's just that mankind itself would probably have nuked itself out of existence back on Earth during our journey.
 
Status
Not open for further replies.
Top Bottom