"In 2019, Greaves, Sousa-Silva, and their colleagues followed up on the initial phosphine observation using ALMA, an array of telescopes on a high Chilean plateau. More sensitive than the Hawaii-based telescope, ALMA also observes the sky at radio frequencies, and it can detect the energy emitted and absorbed by any phosphine molecules spinning in the Venusian atmosphere.
Again, the team detected phosphine. This time, scientists could narrow down the molecule’s signal to equatorial latitudes and an altitude between 32 and 37 miles, where temperatures and pressures aren’t too harsh for life as we know it. Based on the signal’s strength, the team calculated that phosphine’s abundance is roughly 20 parts per billion, or at least a thousand times more than we find on Earth."
"In the outer solar system, phosphine is made deep in the interiors of Jupiter and Saturn. Near the giant planets’ cores, the temperatures and pressures are extreme enough to craft the molecule, which then rises through the atmosphere. But on rocky planets, where conditions are significantly less extreme, there’s no known way to make phosphine in the absence of life—it’s just too energetically demanding. In other words, if the observation of phosphine on Venus is right, something must be continually replenishing the molecule in the planet’s atmosphere. "